Abstract

New fixture technologies, such as sensor-based fixtures, will significantly improve part quality through cutting-tool path compensations in multi-station machining processes (MMPs). Successful application of sensor-based fixtures depends on the development of new variation reduction methodologies to predict part quality in MMPs and detect the critical machining stations whose critical manufacturing variations can be estimated by installing a suitable sensor-based fixture. In this paper, a methodology is proposed to facilitate the implementation of sensor-based fixtures in MMPs. This methodology involves three key steps: (1) an identification of station-induced variations; (2) a sensor placement optimization method for designing sensor-based fixtures; and (3) a compensability analysis. A case study is conducted to demonstrate the effectiveness of the methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.