Abstract
Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback for both signal and object waves has been investigated at high reflection coefficients. It has been shown that the optimal operating mode of a four-wave converter on thermal nonlinearity is the mode in which the pumping waves have equal intensities and there is a compensation for a phase shift arising from the pumping wave self-action. In this operating mode of the four-wave radiation converter, as compared with the case of the absence of feedback for both signal and object waves, a significant increase in the amplitude reflection coefficient is observed with an increase in the pumping waves intensities. In this case, despite the decrease in the bandwidth of spatial frequencies of the object wave with an increase in the pumping wave intensities, the quality of radiation conver-sion with feedback for both signal and object waves is better than in the absence of feedback.
Highlights
Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback
Quality of radiation conversion under four-wave mixing on thermal nonlinearity with feedback for both signal and object waves has been investigated at high reflection coefficients
It has been shown that the optimal operating mode of a four-wave converter on thermal nonlinearity is the mode in which the pumping waves have equal intensities and there is a compensation for a phase shift arising from the pumping wave self-action
Summary
Рассмотрим вырожденное четырёхволновое взаимодействие ( + – = ) в среде с тепловой нелинейностью, расположенной между плоскостями z = 0 и z = l. В среде навстречу друг другу распространяются две волны накачки с комплексными амплитудами A1 и A2, сигнальная и объектная волны с комплексными амплитудами A3 и A4. Нелинейная среда располагается внутри кольцевого резонатора, задающего обратную связь на сигнальную и объектную волны 1. Схема четырёхволнового взаимодействия в кольцевом резонаторе: 1 – полупрозрачное зеркало,. Уравнение Гельмгольца, описывающее четырёхволновое взаимодействие, имеет вид [2]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have