Abstract

By merging a high-performance liquid chromatography diode array detector (HPLC-DAD) method with high-performance thin-layer chromatography (HPTLC), an assay was developed for chemical fingerprinting and quantitative analysis of traditional medicine Majun Mupakhi ELA (MME), and constituent compounds were identified using HPLC coupled with UHPLC-DAD-Quadrupole-Orbitrap-MS method. In addition, the antioxidant capacity of MME was assessed based on the ability of components to scavenge radicals using in vitro method. Using a HPLC-DAD method with HPTLC easily validated the chemical fingerprinting results and quantified three characteristic components, namely, gallic acid (1), daidzein (2), and icariin (3), in commercial MMEs. The three compounds presented excellent regression values (R2 = 0.9999) in the ranges of the test and the method recovery was in the range from 100.49% to 100.68%. The fingerprints had 27 common characteristic peaks, of which 13 were verified by rapid UHPLC-DAD-Q-Orbitrap-MS analysis. In vitro antioxidant assays rapidly assessed and contrasted antioxidant activity or the free radical scavenging activity of the main polyphenolic classes in MMEs, and the antioxidant capacity was mostly affected by the presence of gallic acid. Thus, this study establishes a powerful and meaningful approach for MME quality control and for assessing in vitro antioxidant activity.

Highlights

  • The Uyghur medicine Majun Mupakhi ELA (MME) is administered in the form of a cream composed of Epimedium brevicornum Maxim, Anacyclus pyrethrum (L.) DC, Lycium barbarum L, Cuscuta australis R.Br, Rhodiola crenulata (Hook.f. et Thoms) H.Ohba, Cinnamomum cassia Presl, Orchis morio L., Polygonatum odoratum (Mill) Druce, and Crocus sativus L

  • Reference compounds for icariin, gallic acid, and daidzein were obtained from the Chinese Food and Drug Accreditation Institute. 1,1-Diphenyl-2-picrylhydrazyl (DPPH∙) free radical was obtained from Munich, Germany, and 2,2󸀠-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) ABTS∗+ free radical was from Sigma

  • HPLC-DAD and high-performance thinlayer chromatography (HPTLC) fingerprinting coupled with a chemical profiling method based on ultrahigh-pressure liquid chromatography (UHPLC)-QOrbitrap-MS was applied to rapidly detect characteristic chemical markers for quality control and quantitative analysis of MMEs

Read more

Summary

Introduction

The Uyghur medicine MME is administered in the form of a cream composed of Epimedium brevicornum Maxim, Anacyclus pyrethrum (L.) DC, Lycium barbarum L, Cuscuta australis R.Br, Rhodiola crenulata (Hook.f. et Thoms) H.Ohba, Cinnamomum cassia Presl, Orchis morio L., Polygonatum odoratum (Mill) Druce, and Crocus sativus L. The MME which has been used as an aphrodisiac and to treat both impotence and erectile dysfunction has been applied in clinical settings [1]. Many of the components of each herb in MME were reported to have excellent bioactivity, including aphrodisiac (PDE-5 inhibition), antiosteoporosis, phytoandrogenic, immunomodulatory, antioxidant, antifatigue, and antiviral activities and have been used to treat sexual dysfunction. The components and bioactivity of MME as a whole are unclear. It is necessary to clarify the MME components and evaluate the quality standard

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call