Abstract

Pelagic fishes represent the main Mediterranean fisheries in terms of quantity. However, waste and spoilage of pelagic fish are substantial for a variety of reasons, such as their high perishability and the lack or inadequate supply of ice and freezing facilities. In this work, fresh Mediterranean horse mackerel ( Trachurus mediterraneus) were irradiated at 1 and 2 kGy and stored in ice for 18 days. Quality changes during storage were followed by the determination of microbial counts, trimethylamine (TMA) and volatile basic nitrogen contents. Similarly, lipid composition and sensory analysis were carried out. Irradiation treatment was effective in reducing total bacterial counts throughout storage. Total basic volatile nitrogen content (TVB-N) and TMA levels increased in all lots with storage time, their concentrations being significantly reduced by irradiation, even when the lower level (1 kGy) was used. According to the quality index method, the control lot had a sensory shelf-life of 4 days, whereas those of the irradiated lots were extended by 5 days. Also, low-dose irradiation had no adverse effect on the nutritionally important polyunsaturated fatty acids (PUFA) of Mediterranean horse mackerel. In the same way, thiobarbituric acid-reactive substances values increased with irradiation during the first day, but these values were lower at the end of storage, compared to the control. Results confirm the practical advantages of using γ irradiation as an additional process to chilled storage to enhance the microbiological quality and to extend the shelf-life of small pelagic species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call