Abstract

In the field of mobile crowd sensing (MCS), the traditional client–cloud architecture faces increasing challenges in communication and computation overhead. To address these issues, this paper introduces edge computing into the MCS system and proposes a two-stage task allocation optimization method under the constraint of limited computing resources. The method utilizes deep reinforcement learning for the selection of optimal edge servers for task deployment, followed by a greedy self-adaptive stochastic algorithm for the recruitment of sensing participants. In simulations, the proposed method demonstrated a 20% improvement in spatial coverage compared with the existing RBR algorithm and outperformed the LCBPA, SMA, and MOTA algorithms in 41, 42, and 48 tasks, respectively. This research contributes to the optimization of task allocation in MCS and advances the integration of edge computing in MCS systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call