Abstract

PurposeThe objective of this work is to determine mechanical, radiation, and imaging isocentres in three-dimensional (3D) coordinates and verifying coincidence of isocentres of passively scattered proton beam using a visual tracking system (VTS) and an in-house developed phantom named the Eagle. MethodsThe Eagle phantom consists of two modules: The first, named Eagle-head, is used for determining 3D mechanical isocentre of gantry rotation. The second, named Eagle-body, is used for determining 3D radiation and imaging isocentres. The Eagle-body has four slots wherein radiochromic films were inserted for measuring the 3D radiation isocentre and a metal bead was embedded in the centre of one cube to determine the imaging isocentre; this was determined by analysing cone-beam computed tomography images of the cube. Infrared reflective markers that can be tracked by VTS were attached to the Eagle at predetermined locations. The tracked data were converted into 3D treatment room coordinates. The developed method was compared with other methods to assess accuracy. ResultsThe isocentres were determined in mm with respect to the laser isocentre. The mechanical, radiation, and imaging isocentres were (−0.289, 0.189, 0.096), (−0.436, −0.217, 0.009), and (0.134, 0.142, 0.103), respectively. When compared with other methods, the difference in coordinates was (−0.033, −0.107, 0.014) and (0.003, 0.067, 0.039) for radiation and imaging isocentres, respectively. ConclusionThe developed system was found to be useful in providing fast and accurate measurements of the three isocentres in the 3D treatment room coordinate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.