Abstract
Diabetic retinopathy is the leading cause of blindness in the Western world. The World Health Organisation estimates that 135 million people have diabetes mellitus worldwide and that the number of people with diabetes will increase to 300 million by the year 2025 (Amos et al., 1997). Timely detection and treatment for DR prevents severe visual loss in more than 50% of the patients (ETDRS, 1991). Through computer simulations is possible to demonstrate that prevention and treatment are relatively inexpensive if compared to the health care and rehabilitation costs incurred by visual loss or blindness (Javitt et al., 1994). The shortage of ophthalmologists and the continuous increase of the diabetic population limits the screening capability for effective timing of sight-saving treatment of typical manual methods. Therefore, an automatic or semi-automatic system able to detect various type of retinopathy is a vital necessity to save many sight-years in the population. According to Luzio et al. (2004) the preferred way to detect diseases such as diabetic retinopathy is digital fundus camera imaging. This allows the image to be enhanced, stored and retrieved more easily than film. In addition, images may be transferred electronically to other sites where a retinal specialist or an automated system can detect or diagnose disease while the patient remains at a remote location. Various systems for automatic or semi-automatic detection of retinopathy with fundus images have been developed. The results obtained are promising but the initial image quality is a limiting factor (Patton et al., 2006); this is especially true if the machine operator is not a trained photographer. Algorithms to correct the illumination or increase the vessel contrast exist (Chen & Tian, 2008; Foracchia et al., 2005; Grisan et al., 2006;Wang et al., 2001), however they cannot restore an image beyond a certain level of quality degradation. On the other hand, an accurate quality assessment algorithm can allow operators to avoid poor images by simply re-taking the fundus image, eliminating the need for correction algorithms. In addition, a quality metric would permit the automatic submission of only the best images if many are available. The measurement of a precise image quality index is not a straightforward task, mainly because quality is a subjective concept which varies even between experts, especially for images that are in the middle of the quality scale. In addition, image quality is dependent upon the type of diagnosis being made. For example, an image with dark regions might be considered of good quality for detecting glaucoma but of bad quality for detecting diabetic retinopathy. For this reason, we decided to define quality as the 'characteristics of an image that allow the retinopathy diagnosis by a human or software expert'. Fig. 1 shows some examples of macula centred fundus images whose quality is very likely to be judged as poor by many ophthalmologists. The reasons for this vary. They can be related to the camera settings like exposure or focal plane error (Fig. 1.(a,e,f)), the camera condition like a dirty or shuttered lens (Fig. 1.(d,h)), the movements of the patient which might blur the image (Fig. 1.(c)) or if the patient is not in the field of view of the camera (Fig. 1.(g)). We define an outlier as any image that is not a retina image which could be submitted to the screening system by mistake. Existing algorithms to estimate the image quality are based on the length of visible vessels in the macula region (Fleming et al., 2006), or edges and luminosity with respect to a reference image (Lalonde et al., 2001; Lee & Wang, 1999). Another method uses an unsupervised classifier that employs multi-scale filterbanks responses (Niemeijer et al., 2006). The shortcomings of these methods are either the fact that they do not take into account the natural variance encountered in retinal images or that they require a considerable time to produce a result. Additionally, none of the algorithms in the literature that we surveyed generate a 'quality measure'. Authors tend to split the quality levels into distinct classes and to classify images in particular ones. This approach is not really flexible and is error prone. In fact human experts are likely to disagree if many categories of image quality are used. Therefore, we think that a normalized 'quality measure' from 0 to 1 is the ideal way to approach the classification problem. Processing speed is another aspect to be taken into consideration. While algorithms to assess the disease state of the retina do not need to be particularly fast (within reason), the time response of the quality evaluation method is key towards the development of an automatic retinopathy screening system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have