Abstract
A kinetic model of a molecular control system for the cellular decision to proliferate or differentiate is formulated and analyzed for the purpose of understanding how the system can break down in cancer cells. The proposed core of this control system is composed of the transcription factors Myc and p53. The network of interactions between these factors involves negative and positive feedback loops that are linked to pathways involved in differentiation, cell cycle, and apoptosis. Understanding the dynamics of the Myc-p53 control system is aided by the postulate that there exists a cancer zone defined as a range of oncogenic Myc activities where the probability of initiating cancer is high. We propose that an essential role of p53 is to prevent the system from entering or staying too long in the cancer zone by downregulating Myc or, when Myc activity somehow becomes too high, by inducing apoptosis, cell cycle arrest, or differentiation. Kinetic modeling illustrates how deletions or aberrations in PTEN, MDM2, and ARF (genes implicated in various cancers, including glioma) affect the Myc-p53 control system. In addition, computer simulations demonstrate how this control system generates different cellular phenotypes characterized by rates of cellular differentiation and proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.