Abstract

A new mechanistic deterministic model for assessing the impact of temperature variability on malaria transmission dynamics is developed. Sensitivity and uncertainty analyses of the model parameters reveal that, for temperature values in the range 16–[Formula: see text]C, the three parameters with the greatest influence on disease dynamics are the mosquito carrying capacity, transmission probability per contact for susceptible mosquitoes and human recruitment rate. This study emphasizes the combined use of mosquito-reduction strategies and personal protection against mosquito bites during periods when the mean monthly temperatures are in the range 16.7–25[Formula: see text]C. For higher monthly mean temperatures in the range 26–34[Formula: see text]C, mosquito-reduction strategies should be emphasized ahead of personal protection. Numerical simulations of the model reveal that mosquito maturation rate has a minimum sensitivity (to the associated reproduction threshold of the model) at 24[Formula: see text]C and maximum at 30[Formula: see text]C. The mosquito biting rate has maximum sensitivity at 26[Formula: see text]C, while the minimum value for the transmission probability per bite for susceptible mosquitoes occurs at 24[Formula: see text]C. Furthermore, it is shown, using mean monthly temperature data from 67 cities across the four regions of sub-Saharan Africa, that malaria burden (measured in terms of the total number of new cases of infection) increases with increasing temperature in the range 16–28[Formula: see text]C and decreases for temperature values above 28[Formula: see text]C in West Africa, 27[Formula: see text]C in Central Africa, 26[Formula: see text]C in East Africa and 25[Formula: see text]C in South Africa. These findings, which support and complement a recent study by other authors, reinforce the potential importance of temperature and temperature variability on future malaria transmission trends. Further simulations show that mechanistic malaria transmission models that do not incorporate temperature variability may under-estimate disease burden for temperature values in the range 23–27[Formula: see text]C, and over-estimate disease burden for temperature values in the ranges 16–22[Formula: see text]C and 28–32[Formula: see text]C. Additionally, models that do not explicitly incorporate the dynamics of immature mosquitoes may under- or over-estimate malaria burden, depending on mosquito abundance and mean monthly temperature profile in the community.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.