Abstract
Ultrafine grinding is an important pretreatment to achieve the physical modification of dietary fiber. In this study, ultrafine grinding treatments were performed for different times to give pea insoluble dietary fiber (PIDF) samples with varied particle sizes (D50). The correlations and quantitative relationships between the microstructures of multi-scales PIDF and its in vitro glucose adsorption and diffusion behaviors were comprehensively evaluated. The results indicated that the specific surface area (SSA), pore volume (PV) and oxygen-to-carbon surface ratio (O/C) of PIDF were significantly increased by ultrafine grinding at the cellular scale, while D50 and cellulose crystallinity (CrI) were significantly decreased. These changes significantly improved the glucose adsorption capacity (GAC) of PIDF. The order of importance of microstructural changes on GAC was O/C > PV > SSA > CrI > D50. GAC showed positive exponential relationships with SSA, PV, and O/C and showed a negative linear relationship with CrI. The ability to retard glucose diffusion increased significantly with decreased fiber particle size because of improved adsorption and interception of glucose and the dense physical barrier effect of PIDF. The quantitative equation of maximum glucose dialysis retardation index was GDRImax = −1.65 ln(D50) + 16.82 ln(GAC) − 68.22 (R2 = 0.99). The results could provide theoretical support for quantitative and targeted intervention of dietary fiber structure for blood glucose control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.