Abstract

On account of the effect of limited treatment resources on the control of epidemic disease, a saturated removal rate is incorporated into Hethcote’s SIR epidemiological model (Hethcote, SIAM Rev. 42:599–653, 2000). Unlike the original model, the model has two endemic equilibria when R 0<1. Furthermore, under some conditions, both the disease free equilibrium and one of the two endemic equilibria are asymptotically stable, i.e., the model has bistable equilibria. Therefore, disease eradication not only depends on R 0 but also on the initial sizes of all sub-populations. By the Poincaré-Bendixson theorem, Poincaré index, center manifold theorem, Hopf bifurcation theorem and Lyapunov-Lasalle theorem, etc., the existence and asymptotical stability of the equilibria, the existence, stability and direction of Hopf bifurcation are discussed, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.