Abstract

We introduce, for each state of a bosonic quantum field, its quadrature coherence scale (QCS), a measure of the range of its quadrature coherences. Under coupling to a thermal bath, the purity and QCS are shown to decrease on a timescale inversely proportional to the QCS squared. The states most fragile to decoherence are therefore those with quadrature coherences far from the diagonal. We further show a large QCS is difficult to measure since it induces small scale variations in the state's Wigner function. These two observations imply a large QCS constitutes a mark of "macroscopic coherence." Finally, we link the QCS to optical classicality: optical classical states have a small QCS and a large QCS implies strong optical nonclassicality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.