Abstract

We focus on Taylor Series Methods (TSM) and Automatic Differentiation (AD) for the numerical solution of Ordinary Differential Equations (ODE) characterized by a vector field given by a finite composition of elementary and standard functions. We show that computational advantages are achieved if a kind of pre-processing said Exact Quadratization (EQ) is applied to the ODE before applying the TSM and the AD. In particular, when the ODE function is given by a formal polynomial (i.e. with real powers) of n variables and m monomials, the computational complexity required by our EQ based method for the calculation of the k-th order Taylor coefficient is O(k) whereas by using the existing AD methods it amounts to O(k2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call