Abstract

We derive conditions for quadratic stabilizability of linear networked control systems by dynamic output feedback and communication protocols. These conditions are used to develop a simultaneous design of controllers and protocols in terms of matrix inequalities. The obtained protocols do not require knowledge of controller and plant states but only of the discrepancies between current and the most recently transmitted values of nodes’ signals, and are implementable on controller area networks. We demonstrate on a batch reactor example that our design guarantees quadratic stability with a significantly smaller network throughput than previously available designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.