Abstract

We report on the efficient turbomole implementation of quadratic response properties within the time-dependent density functional theory (TDDFT) context that includes the static and dynamic dipole hyperpolarizability, ground-to-excited-state two-photon absorption amplitudes (through a single residue) and state-to-state one-photon absorption amplitudes (through a double residue). Our implementation makes full use of arbitrary (including non-Abelian) point-group symmetry as well as permutational symmetry and enables the calculation of nonlinear properties with hybrid density functionals for molecules with hundreds of atoms and thousands of basis functions at a cost that is a fixed multiple of the cost of the corresponding linear properties. Using the PBE0 hybrid density functional, we show that excited-state absorption spectra computed within the pseudowavefunction approach contain the qualitative features of transient absorption spectra tracking excimer formation in perylene diimide dimers, two-photon absorption cross sections for a series of highly twisted fused porphyrin chains are semiquantitatively reproduced, and the computed dynamic hyperpolarizability of several calix[4]arene stereoisomers yield simulated hyper-Raleigh scattering signals consistent with experiment. In addition, we show that the incorrect pole structure of adiabatic TDDFT properties can cause incorrect excited-state absorption spectra and overly resonant hyperpolarizabilities, and discuss possible remedies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.