Abstract
We report a density functional theory (DFT) and time-dependent DFT (TDDFT) investigation of the thiolated silver nanoclusters [Ag44(SR)30](4-), Ag14(SR)12(PR'3)8, Ag31(SG)19, Ag32(SG)19, and Ag15(SG)11, which were synthesized and for which one-photon absorption (OPA) characterization is available. Our computational investigation based on careful examination of the exchange-correlation functional used in DFT geometry optimization and for the linear optical properties predictions by TDDFT, demonstrated good agreement with the measured linear absorption spectra, however dependent on the applied functional. Following the benchmarking, we evaluated the two-photon absorption (TPA) response using TDDFT, noting that accurate prediction of OPA is important for suppositions on the spectral range for TPA enhancement because of the sensitivity to the excitation energies. Although the TPA cross-section results are complicated by resonance effects and quantifying TPA cross sections for these systems is difficult, our results indicate that the nanoclusters Ag15 and Ag31/32 are likely to have large TPA cross sections. The spherical symmetry of the Ag44 and Ag14 nanoclusters leads to applicability of superatom theory, while it is not as useful for the more oblate geometries of the Ag15 and Ag31/32 systems.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have