Abstract

The problem of unwrapping a noisy principal-value phase field or, equivalently, reconstructing an unwrapped phase field from noisy and possibly incomplete phase differences may be considered ill-posed in the sense of Hadamard. We apply the Thikonov regularization theory to find solutions that correspond to minimizers of positive-definite quadratic cost functionals. These methods may be considered generalizations of the classical least-squares solution to the unwrapping problem; the introduction of the regularization term permits the reduction of noise (even if this noise does not generate integration-path inconsistencies) and the interpolation of the solution over regions with missing data in a stable and controlled way, with a minimum increase of computational complexity. Algorithms for finding direct solutions with transform methods and implementations of iterative procedures are discussed as well. Experimental results on synthetic test images are presented to illustrate the performance of these methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.