Abstract

The identification problems, i.e., the problems of finding unknown parameters in distributed systems from the observations are very important in modern control theory. The solutions of these identification problems can be obtained by solving the equations of the first kind. However, the solutions are often unstable. In other words, they are not continuously dependent on the data. The regularization or Tihonov's regularization is known as one of the stabilizing algorithms to solve these non well-posed problems. In this paper is studied the regularization method for identification of distributed systems. Several approximation theorems are proved to solve the equations of the first kind. Then, identification problems are reduced to the minimization of quadratic cost functionals by virtue of these theorems. On the other hand, it is known that the statistical methods for identification such as the maximum likelihood lead to the minimization problems of certain quadratic functionals. Comparing these quadratic cost functionals, the relations between the regularization and the statistical methods are discussed. Further, numerical examples are given to show the effectiveness of this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call