Abstract

We experimentally study the spin and electric photocurrents excited by a linearly polarized light via direct interband transitions in an InGaAs/InAlAs quantum well. In the absence of a magnetic field, the linearly polarized light induces a pure spin current due to the spin-orbit coupling, which may be transformed into a measurable electric current by applying an in-plane magnetic field. The induced electric photocurrent is linear with the in-plane magnetic field. Here, we report a quadratic magnetic field dependence of the photocurrent in the presence of an additional perpendicular component of the magnetic field. We attribute the observation to the Hall effect of magnetoelectric photocurrent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call