Abstract

A linearly polarized light normally incident on a semiconductor quantum well with spin-orbit coupling may generate pure spin current via direct interband optical transition. An electric photocurrent can be extracted from the pure spin current when an in-plane magnetic field is applied, which has been recently observed in the InGaAs/InAlAs quantum well [Dai et al., Phys. Rev. Lett. 104, 246601 (2010)]. Here we present a theoretical study of this magnetoelectric photocurrent effect associated with the interband transition. By employing the density matrix formalism, we show that the photoexcited carrier density has an anisotropic distribution in $\mathbf{k}$ space, strongly dependent on the orientation of the electron wavevector and the polarization of the light. This anisotropy provides an intuitive picture of the observed dependence of the photocurrent on the magnetic field and the polarization of the light. We also show that the ratio of the pure spin photocurrent to the magnetoelectric photocurrent is approximately equal to the ratio of the kinetic energy to the Zeeman energy, which enables us to estimate the magnitude of the pure spin photocurrent. The photocurrent density calculated with the help of an anisotropic Rashba model and the Kohn-Luttinger model can produce all three terms in the fitting formula for measured current, with comparable order of magnitude, but discrepancies are still present and further investigation is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call