Abstract

This article illustrates the use of linear and nonlinear regression models to obtain quadratic estimates of covariance parameters. These models lead to new insights into the motivation behind estimation methods, the relationships between different methods, and the relationship of covariance estimation to prediction. In particular, we derive the standard estimating equations for minimum norm quadratic unbiased translation invariant estimates (MINQUEs) from an appropriate linear model. Connections between the linear model, minimum variance quadratic unbiased translation invariant estimates (MIVQUEs), and MINQUEs are examined and we provide a minimum norm justification for the use of one-step normal theory maximum likelihood estimates. A nonlinear regression model is used to define MINQUEs for nonlinear covariance structures and obtain REML estimates. Finally, the equivalence of predictions under various models is examined when covariance parameters are estimated. In particular, we establish that when using MINQUE, iterative MINQUE, or restricted maximum likelihood (REML) estimates, the choice between a stationary covariance function and an intrinsically stationary semivariogram is irrelevant to predictions and estimated prediction variances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.