Abstract

Generalized estimating equations (GEE) provide a regression framework for analyzing correlated data that are not necessarily assumed to be normal. For linear mixed models assuming normality, maximum likelihood (ML) and restricted maximum likelihood (REML) are commonly used for estimating variance and covariance parameters. In the analysis of variance tradition, minimum norm quadratic unbiased estimation (MINQUE) has been developed to estimate variance and covariance components without relying on distributional assumptions. This article rewrites the ML, REML, and MINQUE estimating equations in a form similar to GEE. This form is not particularly useful for computations, but it provides a very clear picture of the similarities and differences of the four methods. The derivations are straightforward and suitable for a linear models course.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.