Abstract

For more than half a century, most of the plasma scientists have encountered a violation of the conservation laws of charge, momentum, and energy whenever they have numerically solved the first-principle equations of kinetic plasmas, such as the relativistic Vlasov–Maxwell system. This fatal problem is brought by the fact that both the Vlasov and Maxwell equations are indirectly associated with the conservation laws by means of some mathematical manipulations. Here we propose a quadratic conservative scheme, which can strictly maintain the conservation laws by discretizing the relativistic Vlasov–Maxwell system. A discrete product rule and summation-by-parts are the key players in the construction of the quadratic conservative scheme. Numerical experiments of the relativistic two-stream instability and relativistic Weibel instability prove the validity of our computational theory, and the proposed strategy will open the doors to the first-principle studies of mesoscopic and macroscopic plasma physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.