Abstract

There are a lot of methods for the stabilization of quadcopters and the newest are based on AI. A neural network is a simplified model that imitates the human brain's processes. In the research paper, we present a neural network control model for quadcopter stabilization. A single hidden layer network model was estimated to investigate the dynamics of the UAV. A control system with a classical PID controller was used to train the neural network model. This method is used for examining how the neural network imitates the stabilization of the quadcopter in real flight mode. The novelty of the work was to design of small size 3 layers NN model that runs in real-time in a quadcopter. The PID and machine learning controllers' operation results were compared to each other andshown in the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.