Abstract

A quad-element multiple-input-multiple-output (MIMO) antenna with fractional bandwidth (FBW) of 52.42% (3.35–5.73 GHz) is proposed for LTE, WLAN (4.9/5 GHz), and 5G (sub-6 GHz) applications. The bandwidth is improved by introducing a tapered feed line and rectangular stubs in the partial ground plane. The maximum isolation of the proposed MIMO antenna is 27 dB. The diversity performance characteristics of the proposed antenna are studied in terms of the envelope correlation coefficient (ECC), diversity gain (DG), mean effective gain (MEG), total active reflection coefficient (TARC), isolation between the ports, and channel capacity loss (CCL) and the values obtained are 0.003, 9.98 dB, ±3 dB, −4 dB, −10 dB, and 0.10 bits/s/Hz respectively. A model of the proposed antenna is fabricated on the FR-4 substrate having a dielectric constant of 4.4 and a loss tangent of 0.02 with an electrical dimension of 0.45λ0 × 0.45λ0. The measured results demonstrate a decent likeness to simulated ones in the entire operating frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call