Abstract
A recombinant inbred line (RIL) population with 305 lines derived from a cross of Hanxuan 10 × Lumai 14 was used to identify the dynamic quantitative trait loci (QTL) for plant height (PH) in wheat (Triticum aestivum L.). Plant heights of RILs were measured at five stages in three environments. Total of seven genomic regions covering PH QTL clusters on different chromosomes identified from a DH population derived from the same cross as the RIL were used as the candidate QTLs and extensively analyzed. Five additive QTLs and eight pairs of epistatic QTLs significantly affecting plant height development were detected by unconditional QTL mapping method. Six additive QTLs and four pairs of epistatic QTLs were identified using conditional mapping approach. Among them, three additive QTLs (QPh.cgb-1B.3, QPh.cgb-4D.1, QPh.cgb-5B.2) and three pairs of epistatic QTLs (QPh.cgb-1B.1–QPh.cgb-1B.3, QPh.cgb-2A.1–QPh.cgb-2D.1, QPh.cgb-2D.1–QPh.cgb-5B.2) were common QTLs detected by both methods. Three QTLs (QPh.cgb-4D.1, QPh.cgb-5B.3, QPh.cgb-5B.4) were expressed under both drought and well-water conditions. The present data are useful for wheat genetic manipulations through molecular marker-assisted selection (MAS), and provides new insights into understanding the genetic mechanism and regulation network underlying the development of plant height in crops. Our result in this study indicated that combining unconditional and conditional mapping methods could make it possible to reveal not only the stable/conserved QTLs for the developmental traits such as plant height but also the dynamic expression feature of the QTLs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have