Abstract

Quantitative trait loci (QTLs) influencing morphological traits were identified by restriction fragment length polymorphism (RFLP) analysis in a population of recombinant inbred lines (RILs) derived from a cross of the cultivated tomato Lycopersicon esculentum with a related wild species, Lycopersicon cheesmanii. One hundred and thirty-two RFLP loci spaced throughout the tomato genome were used as DNA probes on genomic DNA from 97 RIL families. Morphological traits, including plant height, plant fresh mass, number of branches, number of nodes, first flower-bearing node, and leaf length, were evaluated in two controlled environment trials in 1992 and 1993. QTLs were detected via regression analyses at multiple marker loci for each morphological trait. A total of 41 markers were significantly associated with the traits examined. Large additive effects were measured at many of these loci. QTLs for multiple traits were detected on chromosomes 3 (TG74) and 4 (CT188), suggesting the possible association of these chromosome segments with genes controlling growth and development in tomato. These chromosomal regions were also associated with multiple morphological traits in a L. esculentum x Lycopersicon pennellii cross. A total of 13% of the QTLs identified for traits common to both studies occupied similar map positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.