Abstract

Khanal, R., Navabi, A. and Lukens, L. 2015. Linkage map construction and quantitative trait loci (QTL) mapping using intermated vs. selfed recombinant inbred maize line (Zea mays L.). Can. J. Plant Sci. 95: 1133–1144. Intermating of individuals in an F2population increases genetic recombination between markers, which is useful for linkage map construction and quantitative trait loci (QTL) mapping. The objectives of this study were to compare the linkage maps and precision of QTL detection in an intermated recombinant inbred line (IRIL) population and a selfed recombinant inbred line (RIL) population. Both, IRIL and RIL, populations were developed from Zea mays inbred lines CG60 and CG102. The populations were grown in two environments to evaluate traits, and inbred lines from each population were genotyped with SSR and SNP markers for linkage map construction and QTL identification. In addition, we simulated RIL and IRIL populations from two inbred parents to compare the precision of QTL detection between simulated RIL and IRIL populations. In the empirical study, the linkage map was longer in RIL as compared with IRIL, and the average QTL support interval was reduced by 1.37-fold in the IRIL population compared with the RIL population. We detected 16 QTL for flowering time, plant height, leaf number, and stay green in at least one recombinant inbred line population. Two out of 16 QTL were shared between two recombinant inbred line populations. In the simulation study, the QTL support interval was reduced by 1.66-fold in the IRIL population as compared with the RIL population and linked QTL were identified more frequently in IRIL population as compared with RIL population. This study supports the utility of intermated RIL populations for precise QTL mapping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call