Abstract

To search for newer and potent antileishmanial drugs, a series of 36 compounds of 5-(5-nitroheteroaryl-2-yl)-1,3,4-thiadiazole derivatives were subjected to a quantitative structure-activity relationship (QSAR) analysis for studying, interpreting, and predicting activities and designing new compounds using several statistical tools. The multiple linear regression (MLR), nonlinear regression (RNLM), and artificial neural network (ANN) models were developed using 30 molecules having pIC50 ranging from 3.155 to 5.046. The best generated MLR, RNLM, and ANN models show conventional correlation coefficients R of 0.750, 0.782, and 0.967 as well as their leave-one-out cross-validation correlation coefficients RCV of 0.722, 0.744, and 0.720, respectively. The predictive ability of those models was evaluated by the external validation using a test set of 6 molecules with predicted correlation coefficients Rtest of 0.840, 0.850, and 0.802, respectively. The applicability domains of MLR and MNLR transparent models were investigated using William’s plot to detect outliers and outsides compounds. We expect that this study would be of great help in lead optimization for early drug discovery of new similar compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.