Abstract

QSAR analysis based on classical Hansch approach was adopted on two recently reported novel series of 2-phenylpyran-4-ones as selective cyclooxygenase-2 (COX-2) inhibitors. The 6-methyl derivatives of title compounds bifurcate as 3-phenoxypyran-4-ones (subset A) and 3-phenylpyran-4-ones (subset B) among series 1. Series 2 consists of 5-chloro derivatives of title compounds. Various regression equations were derived to study the influence of phenoxy and phenyl ring substituents of series 1 compounds on COX-2, COX-1 and selective COX-2 over COX-1 inhibitory activity. The best triparametric equation derived for 36 compounds of series 1 explains the hydrophobic, electronic and steric requirements for improved COX-2 inhibitory activity. QSAR model derived to explore the selective COX-2 over COX-1 inhibition showed that selectivity could be influenced by size and lipophilicity of substituents. The size of the first atom of 2 substituents appears to have negative effect on selectivity, whereas highly polar 3 substituents at R are favorable for improved selectivity. QSAR investigations on series 2 compounds revealed some interesting correlation of COX-2 inhibitory activity with calculated physicochemical properties of whole molecules. The positive log P confirms the hydrophobic interaction of series 2 compounds with COX-2 enzyme. The positive MR term indicates that an overall increase in size and polarizabilty of the molecules increases COX-2 inhibitory activity. The positive contribution of structural variable suggests biphenyl analogs are extremely potent COX-2 inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call