Abstract
Electrocardiogram (ECG) is one of the most important physiological signals of human body, which contains important clinical information about the heart. Monitoring of ECG signal is done through QRS detection. In this paper, an improved QRS detection algorithm, based on adaptive filtering principle, has been designed. Enumeration of the effectiveness of various LMS variants used in adaptive filtering based QRS detection algorithm has been done through fidelity parameters like sensitivity and positive predictivity. Whole family of LMS algorithm has been implemented for comparison. Sign-sign LMS, sign error LMS, basic LMS and normalized LMS are re-implemented, while variable leaky LMS, variable step-size LMS, leaky LMS, recursive least squares (RLS), and fractional LMS are novel combination presented in this paper. After analysis of the obtained results, performance of leaky-LMS algorithm is found to be the best with sensitivity, positive predictivity, and processing time of 99.68%, 99.84%, and 0.45s respectively. Reported results are tested and evaluated over MIT/BIH arrhythmia database. Presented study also concludes that the performance of most of the variants gets affected due to low SNR but the Leaky LMS performs better even under heavy noise conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.