Abstract

Purpose. Electrocardiogram (ECG) signal is a record of the electrical activity of the heart and contains important clinical data about cardiovascular-related misfunctioning. The goal of the present work is to develop an improved QRS detection algorithm for the detection of heart abnormalities. Methods. In this present work stationary wavelet transforms (SWT) based method has been proposed for precise detection of QRS complex with ‘sym2’ mother wavelet. The stationary wavelet transform is a systematic mathematical tool to decompose the signal without downsampling using scale analysis and provides high detection of QRS complex and accurate localization of signal components. In the proposed method four level of decomposition is applied and the initial thresholding value is computed by the maximum amplitude of scale one at level four in SWT coefficients without the zero-crossing amplitude detection method. The multi-layered dynamic thresholding method has been applied to detect the true R-peak values and locate the QRS complex in the ECG signal. Results. For evaluation of results, the presented methodology is assessed on MIT-BIH, QTDB, and Noise stress test databases. In MIT-BIH, the sensitivity = 99.88%, positive predictivity = 99.93%, accuracy = 99.80% and detection error rate = 0.18% is achieved. In NSTD database, sensitivity = 97.46%, positive predictivity = 94.20%, accuracy = 91.95% and detection error rate = 8.47% and in QTDB, sensitivity = 99.95%, positive predictivity = 99.90%, accuracy = 99.71% and detection error rate = 0.16% is executed. Conclusion. In the presented proposed methodology, the computation complexity is low and exhibits a simple technique rather than an empirical approach. The proposed technique corroborates the performance for the detection of QRS complex with improved accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call