Abstract
Automation is revamping our preprocessing pipelines, and accelerating the delivery of personalized digital medicine. It improves efficiency, reduces costs, and allows clinicians to treat patients without significant delays. However, the influx of multimodal data highlights the need to protect sensitive information, such as clinical data, and safeguard data fidelity. One of the neuroimaging modalities that produces large amounts of time-series data is Electroencephalography (EEG). It captures the neural dynamics in a task or resting brain state with high temporal resolution. EEG electrodes placed on the scalp acquire electrical activity from the brain. These electrical potentials attenuate as they cross multiple layers of brain tissue and fluid yielding relatively weaker signals than noise-low signal-to-noise ratio. EEG signals are further distorted by internal physiological artifacts, such as eye movements (EOG) or heartbeat (ECG), and external noise, such as line noise (50 Hz). EOG artifacts, due to their proximity to the frontal brain regions, are particularly challenging to eliminate. Therefore, a widely used EOG rejection method, independent component analysis (ICA), demands manual inspection of the marked EOG components before they are rejected from the EEG data. We underscore the inaccuracy of automatized ICA rejection and provide an auxiliary algorithm-Second Layer Inspection for EOG (SLOG) in the clinical environment. SLOG based on spatial and temporal patterns of eye movements, re-examines the already marked EOG artifacts and confirms no EEG-related activity is mistakenly eliminated in this artifact rejection step. SLOG achieved a 99% precision rate on the simulated dataset while 85% precision on the real EEG dataset. One of the primary considerations for cloud-based applications is operational costs, including computing power. Algorithms like SLOG allow us to maintain data fidelity and precision without overloading the cloud platforms and maxing out our budgets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.