Abstract

Industrial automation systems traditionally require communication systems to have high availability, high security and low latency. This results in efficient protocols with low protocol-processing overhead, but somewhat rigid communication systems that are cumbersome to scale up when deployed. On the other hand, Internet Protocol based communication – which is often preferred by IoT systems – offer high flexibility, but best-effort reliability. Furthermore, various radio access technologies have been created for IoT devices facilitating their IP networking as well. Nevertheless, these wireless technologies are rarely capable of corresponding to the strict requirements of complex industrial use cases, they usually cannot certain the necessary Quality of Service (QoS) promises.On the contrary, 5G mobile technologies are being developed exactly for such industrial and automation IoT use cases. Certainly, there are traffic prioritization techniques available for 4G and 5G systems, but their capabilities need to be investigated for Industrial IoT feasibility, before deployment. This paper aims to provide a feasibility study for applying mobile networking technologies (4G and 5G) – and its QoS guarantees – to IIoT applications. The proposed methodology can be extended for benchmarking whether a given use case can benefit from applying mobile networking for its various industrial and automation systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.