Abstract

Fifth-generation and more importantly the forthcoming sixth-generation networks have been given special care for latency and are designed to support low latency applications including a high flexibility New Radio (NR) interface that can be configured to utilize different subcarrier spacings (SCS), slot durations, special scheduling optional features (mini-slot scheduling), cloud- and virtual-based transport network infrastructures including slicing, and finally intelligent radio and transport packet retransmissions mechanisms. QoS analysis with emphasis on the determination of the transmitted packets’ average waiting time is therefore crucial for both network performance and user applications. Most preferred implementations to optimize transmission network rely on the cloud architectures with star network topology. In this paper, as part of our original and innovative contribution, a two-stage queue model is proposed and analytically investigated. Firstly, a two-dimension queue is proposed in order to estimate the expected delay on priority scheduling decisions over the IP/Ethernet MAC layer of IP packet transmissions between gNB and the core network. Furthermore, a one-dimension queue is proposed to estimate the average packet waiting time on the RLC radio buffer before being scheduled mainly due to excessive traffic load and designed transmission bandwidth availability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.