Abstract
In this paper, we present and evaluate the performance of a resource allocation algorithm to enhance the Quality of Service (QoS) provision and energy efficiency of uplink Long Term Evolution (LTE) systems. The proposed algorithm considers the main constraints in uplink LTE resource allocation, i.e., the allocation of contiguous sets of resource blocks of the localized Single Carrier—Frequency Division Multiple Access (SC-FDMA) physical layer to each user, and the imperfect knowledge of the users' uplink buffer status and packet waiting time. The optimal resource allocation is formulated as a discrete connected cake-cutting problem, where different agents are allocated consecutive subsequences of a sequence of indivisible items. This problem is NP-hard, therefore a suboptimal algorithm is introduced, which performs resource allocation using information on the estimated uplink packet delay, the average delay and data rate of past allocations, as well as the required uplink power per resource block. Based on simulation results, the proposed algorithm achieves significant performance improvement in terms of packet timeout rate, goodput, and fairness. Moreover, the effect of poor QoS provision on energy efficiency is demonstrated through the evaluation of the performance in terms of energy consumption per successfully received bit.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have