Abstract
An extensive comparison of full-QM (B3LYP) and QM/MM (B3LYP:UFF) levels of theory has been made for two enantioselective catalytic systems, namely, Pybox-Ru and Box-Cu complexes, in the cyclopropanation of alkenes (ethylene and styrene) with methyl diazoacetate. The geometries of the key reaction intermediates and transition structures calculated at the QM/MM level are generally in satisfactory agreement with full-QM calculated geometries. More importantly, the relative energies calculated at the QM/MM level are in good agreement with those calculated at the full-QM level in all cases. Furthermore, the QM/MM energies are often in better agreement with the stereoselectivity experimentally observed, and this suggests that QM/MM calculations can be superior to full-QM calculations when subtle differences in inter- and intramolecular interactions are important in determining the selectivity, as is the case in enantioselective catalysis. The predictive value of the model presented is validated by the explanation of the unusual enantioselectivity behavior exhibited by a new bis-oxazoline ligand, the stereogenic centers of which are quaternary carbon atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.