Abstract

We present an extension of our semiempirical floating occupation MO-CI approach for the determination of ground and excited state potential energy surfaces of interest in photochemistry. The QM/MM variant of the method, which allows for electrostatic and van der Waals interactions between the QM and MM subsystems, is supplemented with a treatment of covalent interactions based on Antes and Thiel’s connection atom approach. We concentrate on the correct treatment of electrostatic interactions concerning the connection atom, on the specific requirements for the representation of excited states, and on the transferability of the optimal parameters. We show the viability of the method with four examples of connection atoms: S in a thioether bridge, acylic C, aliphatic C, and N in a peptide. The results obtained with the QM/MM treatment compare well with all-QM results of the same level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.