Abstract

Disordered materials are attracting considerable attention because of their enhanced properties compared to their ordered analogs, making them particularly suitable for high-temperature applications. The feasibility of incorporating these materials into new devices depends on a variety of thermophysical properties. Among them, thermal expansion is critical to device stability, especially in multi-component systems. Its calculation, however, is quite challenging for materials with substitutional disorder, hindering computational screenings. In this work, we introduce QH-POCC to leverage the local tile-expansion of disorder. This method provides an effective partial partition function to calculate thermomechanical properties of substitutionally disordered compounds in the quasi-harmonic approximation. Two systems, AuCu3 and CdMg3, the latter a candidate for long-period superstructures at low temperature, are used to validate the methodology by comparing the calculated values of the coefficient of thermal expansion and isobaric heat capacity with experiment, demonstrating that QH-POCC is a promising approach to study thermomechanical properties of disordered systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call