Abstract
The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameters and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb + Pb collisions at \( \sqrt{s_{NN}}=2.76\) TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source, changing skewness and kurtosis by time depending on beam energy as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have