Abstract
Structural brain changes as measured with Magnetic Resonance Imaging (MRI) are associated with progression of Huntington’s Disease (HD), a trinucleotide repeat neurodegenerative disorder. Neurophysiological measures may offer additional biomarkers of the onset and progression of brain disease. We used quantitative electroencephalography (QEEG) power measures to assess resting state brain function in 27 HD subjects and 15 healthy controls. Those QEEG features that distinguished between HD subjects and healthy controls were examined in relation to illness severity, using Unified Huntington Disease Rating Scale (UHDRS) subscales, as well as to the number of CAG repeats in the HD cohort. HD subjects showed a global increase in delta power as compared to controls, even when examining unmedicated HD subjects only (n = 13), or premanifest HD subjects only (n = 3). HD subjects also showed loss of the normal anterior-posterior (AP) gradient of relative alpha and delta power. Relative alpha AP gradient loss was associated with lower Total Functional Capacity (TFC) and greater cognitive dysfunction. Relative delta AP gradient loss was associated with lower TFC, more severe motor symptoms, and greater number of CAG repeats. Overall, results suggest that QEEG power measures may capture perturbations of brain function that are related to functional status as well as to underlying genetic repeat expansion in HD. Pilot data in the three premanifest HD subjects are consistent with the hypothesis that brain functional abnormalities may be detectable even in premanifest gene carriers. Cross-sectional findings suggest that QEEG measures may be biomarkers of HD progression; prospective studies in larger samples are needed to confirm these findings and test hypotheses regarding underlying mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have