Abstract

The Schwinger confinement mechanism stipulates that a massless fermion and a massless antifermion are confined as a massive boson when they interact in the Abelian QED interaction in (1+1)D.If we approximate light quarks as massless and apply the Schwinger confinement mechanism to quarks, we can infer that a light quark and a light antiquark interacting in the Abelian QED interaction are confined as a QED meson in (1+1)D. Similarly, a light quark and a light antiquark interacting in the QCD interaction in the quasi-Abelian approximation will be confined as a QCD meson in (1+1)D. The QED and QCD mesons in (1+1)D can represent physical mesons in (3+1)D when the flux tube radius is properly taken into account. Such a theory leads to a reasonable description of the masses of π0,η, and η′, and its extrapolation to the unknown QED sector yields an isoscalar QED meson at about 17 MeV and an isovector QED meson at about 38 MeV. The observations of the anomalous soft photons, the hypothetical X17 particle, and the hypothetical E38 particle bear promising evidence for the possible existence of the QED mesons. Pending further confirmation, they hold important implications on the properties on the quarks and their interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.