Abstract
The perspective of Kac-Schwarz operators is introduced to the authors' previous work on the quantum mirror curves of topological string theory in strip geometry and closed topological vertex. Open string amplitudes on each leg of the web diagram of such geometry can be packed into a multi-variate generating function. This generating function turns out to be a tau function of the KP hierarchy. The tau function has a fermionic expression, from which one finds a vector $|W\rangle$ in the fermionic Fock space that represents a point $W$ of the Sato Grassmannian. $|W\rangle$ is generated from the vacuum vector $|0\rangle$ by an operator $g$ on the Fock space. $g$ determines an operator $G$ on the space $V = \mathbb{C}((x))$ of Laurent series in which $W$ is realized as a linear subspace. $G$ generates an admissible basis $\{\Phi_j(x)\}_{j=0}^\infty$ of $W$. $q$-difference analogues $A$, $B$ of Kac-Schwarz operators are defined with the aid of $G$. $\Phi_j(x)$'s satisfy the linear equations $A\Phi_j(x) = q^j\Phi_j(x)$, $B\Phi_j(x) = \Phi_{j+1}(x)$. The lowest equation $A\Phi_0(x) = \Phi_0(x)$ reproduces the quantum mirror curve in the authors' previous work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.