Abstract

In the earlier chapters we have studied representations of current algebras in fermionic Fock spaces. A (fermionic) Fock space is determined by a single Dirac operator D. To set up a Fock space we need a splitting of a complex Hilbert space H to the subspaces H± corresponding to positive and negative frequencies of D. However, in an interacting quantum field theory one really should consider a bundle of Fock spaces parametrized by different Dirac operators. For example, in Yang-Mills theory any smooth vector potential defines a Dirac operator and one must consider the whole bunch of these operators and associated Fock spaces if one wants to describe the interaction of the vector potential with Dirac spinor fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.