Abstract

Viral haemorrhagic septicaemia (VHS) is one of the most serious viral diseases damaging both fresh and marine fish species. VHS caused by VHSV and diagnosis of VHSV has been dependent on the conventional methods, such as cell culture and RT-PCR, which takes a few days or several hours. This study demonstrates a rapid and sensitive QCM biosensor for diagnosis of VHSV infection in fish. The QCM biosensor was developed to detect a main viral RNA encoding G protein in VHSV using the specific DNA probe. To maximize the sensitivity of the biosensor, we prepared three different DNA probes which modified 3′ end of DNA by thiol, amine, or biotin and compared three different immobilisation methods on quartz surface coated with gold: immobilisation of thiol labelled probe DNA on naked gold surface, immobilisation of amino labelled probe DNA on gold surface prepared as carboxyl chip using MPA followed by EDC/NHS activation, and immobilisation of biotin labelled probe DNA on gold surface after immobilising avidin on carboxyl chip prior to biotin. As a result, immobilisation method using avidin–biotin interaction was most efficient to immobilise probe DNA and to detect target DNA. The QCM biosensor system using biotinylated probe DNA was stable enough to withstand 32 times of repeated regenerations and the detection limit was 0.0016 μM. Diagnosis using the QCM biosensor system was more sensitive and much faster than a conventional RT-PCR analysis in detecting the viral RNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.