Abstract

We introduce a microacoustic sensor, which combines the quartz crystal microbalance, a liquid-filled cavity and an intermediate artificial layer with effective acoustic properties. Each of the three components fulfils a specific task. The quartz vibrates in its thickness shear mode and acts as source and detector of shear waves, which penetrate the intermediate artificial layer and excite a resonance in the liquid-filled cavity. Both the piezoelectric transducer and the liquid-filled cavity are high-Q resonators with well-adjusted resonance frequencies very close to each other. The intermediate artificial layer couples the two resonators in a distinct manner via control of the propagation of acoustic waves between the quartz crystal and the liquid-filled cavity layer. The origin of the sensor signal is a change of the resonance frequency of the liquid-filled cavity caused by variations of acoustic properties of the liquid analyte inside the cavity, first of all speed of sound. This resonance appears as second resonance peak in the admittance spectrum of the quartz crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.