Abstract
We consider the stochastic shortest path problem, a classical finite-state Markovian decision problem with a termination state, and we propose new convergent Q-learning algorithms that combine elements of policy iteration and classical Q-learning/value iteration. These algorithms are related to the ones introduced by the authors for discounted problems in Bertsekas and Yu (Math. Oper. Res. 37(1):66-94, 2012). The main difference from the standard policy iteration approach is in the policy evaluation phase: instead of solving a linear system of equations, our algorithm solves an optimal stopping problem inexactly with a finite number of value iterations. The main advantage over the standard Q-learning approach is lower overhead: most iterations do not require a minimization over all controls, in the spirit of modified policy iteration. We prove the convergence of asynchronous deterministic and stochastic lookup table implementations of our method for undiscounted, total cost stochastic shortest path problems. These implementations overcome some of the traditional convergence difficulties of asynchronous modified policy iteration, and provide policy iteration-like alternative Q-learning schemes with as reliable convergence as classical Q-learning. We also discuss methods that use basis function approximations of Q-factors and we give an associated error bound.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.