Abstract
The q-fermion numbers emerging from the q-fermion oscillator algebra are used to reproduce the q-fermionic Stirling and Bell numbers. New recurrence relations for the expansion coefficients in the ‘anti-normal ordering’ of the q-fermion operators are derived. The roles of the q-fermion numbers in q-stochastic point processes and the Bargmann space representation for q-fermion operators are explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.