Abstract

Conventional reverse time migration (RTM) may not produce high-quality images in areas with attenuation and severe topography because severe topographic surfaces have a great impact on seismic wave simulation, resulting in strong scattering and diffraction waves, and anelastic properties of the earth affect the kinematics and dynamics of seismic wave propagation. To overcome these problems, we have developed a [Formula: see text]-compensated topographic RTM method. In this method, a new viscoacoustic quasidifferential equation is introduced to simulate forward- and backward-propagated wavefields. The viscoacoustic equation has a lossy term and a dispersion term without memory variables, and it is solved by a hybrid spatial partial derivative scheme. A new stabilization operator is derived and substituted into the [Formula: see text]-compensated viscoacoustic quasidifferential equation to suppress high-frequency noise during the attenuated wavefield compensation. Numerical tests on a sag attenuating topographic model and an attenuating topographic Marmousi2 model demonstrate that our [Formula: see text]-compensated topographic RTM can produce accurate and high-quality images by correcting the anelastic amplitude loss and phase-dispersion effects. Finally, our method is tested on a field data set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call