Abstract

Regular vine copula provides rich models for dependence structure modeling. It combines vine structures and families of bivariate copulas to construct a number of multivariate distributions that can model a wide range dependence patterns with different tail dependence for different pairs. Two special cases of regular vine copulas, C-vine and D-vine copulas, have been extensively investigated in the literature. We propose the Python package, pyvine, for modeling, sampling and testing a more generalized regular vine copula (R-vine for short). R-vine modeling algorithm searches for the R-vine structure which maximizes the vine tree dependence in a sequential way. The maximum likelihood estimation algorithm takes the sequential estimations as initial values and uses L-BFGS-B algorithm for the likelihood value optimization. R-vine sampling algorithm traverses all edges of the vine structure from the last tree in a recursive way and generates the marginal samples on each edge according to some nested conditions. Goodness-of-fit testing algorithm first generates Rosenblatt’s transformed data $${\varvec{E}}$$ and then tests the hypothesis $$H_0^*: {\varvec{E}} \sim C_{\perp }$$ by using Anderson–Darling statistic, where $$C_{\perp }$$ is the independence copula. Bootstrap method is used to compute an adjusted p-value of the empirical distribution of replications of Anderson–Darling statistic. The computing of related functions of copulas such as cumulative distribution functions, H-functions and inverse H-functions often meets with the problem of overflow. We solve this problem by reinvestigating the following six families of bivariate copulas: Normal, Student t, Clayton, Gumbel, Frank and Joe’s copulas. Approximations of the above related functions of copulas are given when the overflow occurs in the computation. All these are implemented in a subpackage bvcopula, in which subroutines are written in Fortran and wrapped into Python and, hence, good performance is guaranteed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call